
NAME: ___STUDENT #: ______________________
EECE 259: Introduction to Microcomputers Lecture Quiz Mar 30, 2011

An ABS brake controller does two things at the same time. First, it monitors an input signal to indicate that the
wheel is spinning. Second, if the wheel ever stops spinning, it must quickly release and engage the brakes
(pulsing them) several times per second. By pulsing the brakes, the wheel is allowed to spin again and this
restores tire traction. For this problem, write a main program and 2 interrupt service routines to:

• Detect wheel spin. First, your program should use interrupts with KEY3 and count the number of 0-to-1
transitions. For this, KEY3 represents an encoder attached to the wheel: if the wheel is spinning rapidly,
you will get many 0-to-1 transitions per 100ms. Due to speed limits, at least 1ms will pass before the
next 0-to-1 transition occurs. However, you don’t know exactly when it will occur. Hence, use interrupts!

• If no spin, pulse the brakes. Second, your program should apply the brakes by sending a ‘1’ to
LEDG0. Every 100ms, you should check that at least 5 encoder transitions have been detected,
suggesting the wheel is still spinning. . If fewer than 5 transitions have occurred, alternately apply &
release the brakes every 100ms. If at least 5 transitions have been detected, the wheel is still spinning
so you should apply the brakes again for the next 100ms.

#include “259macros.h”

/* global variables */
int counter = 0;
int brake_flag = 0;
 /* this ISR will be called every 100ms */
int main(...) void cntrISR()
{ {
 initInterrupts(); /* remember: no waiting in here */
 enableCounterIRQ(100*ONE_MS,cntrISR);
 enableKeyIRQ(0x8, keyISR);
 /* write your code below */
 while(1) {

 }

 void keyISR()
 {
 /* remember: no waiting in here */

 }

} }

L37-1

NAME: ___STUDENT #: ______________________
EECE 259: Introduction to Microcomputers Lecture Quiz Mar 30, 2011

An ABS brake controller does two things at the same time. First, it monitors an input signal to indicate that the
wheel is spinning. Second, if the wheel ever stops spinning, it must quickly release and engage the brakes
(pulsing them) several times per second. By pulsing the brakes, the wheel is allowed to spin again and this
restores tire traction. For this problem, write a main program and 2 interrupt service routines to:

• Detect wheel spin. First, your program should use interrupts with KEY3 and count the number of 0-to-1
transitions. For this, KEY3 represents an encoder attached to the wheel: if the wheel is spinning rapidly,
you will get many 0-to-1 transitions per 100ms. Due to speed limits, at least 1ms will pass before the
next 0-to-1 transition occurs. However, you don’t know exactly when it will occur. Hence, use interrupts!

• If no spin, pulse the brakes. Second, your program should apply the brakes by sending a ‘1’ to
LEDG0. Every 100ms, you should check that at least 5 encoder transitions have been detected,
suggesting the wheel is still spinning. . If fewer than 5 transitions have occurred, alternately apply &
release the brakes every 100ms. If at least 5 transitions have been detected, the wheel is still spinning
so you should apply the brakes again for the next 100ms.

#include “259macros.h”

/* global variables */
int counter = 0;
int brake_flag = 0;
 /* this ISR will be called every 100ms */
int main(...) void cntrISR()
{ {
 initInterrupts(); /* remember: no waiting in here */
 enableCounterIRQ(100*ONE_MS,cntrISR); if(counter >= 5)
 enableKeyIRQ(0x8, keyISR); brake_flag = 1;
 /* write your code below */ else
 while(1) { brake_flag = !brake_flag;

 ; // do nothing counter = 0;
 *pLEDG = brake_flag;
 }
 *pCOUNTER_STATUS = 1; // clears irq
}
 }

 void keyISR()
 {
 /* remember: no waiting in here */

 int keypress = *pKEY_EDGECAPTURE;
 *pKEY_EDGECAPTURE = 0; // clears irq

 if(keypress & 8)
 counter++;

 }

L37-1

NAME: ___STUDENT #: ______________________
EECE 259: Introduction to Microcomputers Lecture Quiz Mar 30, 2011

An Alarm System does several things at the same time. First, it blinks a warning light on LEDG0 (500ms on,
500ms off) to indicate whether the system is armed. Second, every 10ms it checks to make sure that no alarm
has been triggered. An alarm is triggered if the system is armed and the value of any sensor on SW[9:4]
changes from its previous state; these keys must be polled every 10ms. Third, an alarm is always triggered
immediately via interrupt if the panic buttons on KEY3 or KEY2 are pressed. Fourth, a triggered alarm causes
the alarm lights on LEDR to blink (250ms on, 250ms off). Fifth, once triggered, an alarm is cleared by setting the
alarm password on SW[3..0] and then pressing the clear button on KEY1. Sixth, as the alarm is cleared, if the
password remains on SW[3:0], then the system is NOT armed so no alarm can be triggered and LEDG0 remains
off; if the value of SW[3:0] ever changes becomes armed; if set back to the password it only unarms by KEY1.

#include “259macros.h”

/* global variables */

 /* ISR should be called every _____ */
int main(...) void cntrISR()
{ {
 initInterrupts(); /* remember: no waiting in here */
 enableCounterIRQ(__________,cntrISR);
 enableKeyIRQ(_____________, keyISR);
 /* write your code below */
 while(1) {

 }

 void keyISR()
 {
 /* remember: no waiting in here */

 }

} }

L37-2

NAME: ___STUDENT #: ______________________
EECE 259: Introduction to Microcomputers Lecture Quiz Mar 30, 2011

An Alarm System does several things at the same time. First, it blinks a warning light on LEDG0 (500ms on,
500ms off) if the system is armed but there is no alarm. Second, every 10ms it checks to make sure that no
alarm has been triggered. An alarm is triggered if the system is armed and the value of any sensor on SW[9:4]
changes from its previous state; these keys must be polled every 10ms. Third, an alarm is always triggered
immediately via interrupt if the panic buttons on KEY3 or KEY2 are pressed. Fourth, a triggered alarm causes
the alarm lights on LEDR to blink (250ms on, 250ms off). Fifth, once triggered, an alarm is cleared by setting the
alarm password on SW[3..0] and then pressing the clear button on KEY1. Sixth, as the alarm is cleared, if the
password remains on SW[3:0], then the system is NOT armed so no alarm can be triggered and LEDG0 remains
off; if the value of SW[3:0] ever changes becomes armed; if set back to the password it only unarms by KEY1.

#include “259macros.h”

/* global variables */
enum Modes { IDLE, ARMED, ALARM }; int count = 0;
enum Modes mode = IDLE; int red = 0;
int sensors; int green = 0;
int password = 0xB; int oldpw = 0xB;

 /* ISR should be called every 10ms */
int main(...) void cntrISR()
{ {
 initInterrupts(); /* remember: no waiting in here */
 enableCounterIRQ(10*ONE_MS ,cntrISR); *pCOUNTER_STATUS = 1; // clear irq
 enableKeyIRQ(8 | 4 | 2 , keyISR);
 count++;
 /* write your code below */ if(mode==ARMED && (count%50==0)) {
 while(1) { green = !green;
 count = 0;
 }

 if(mode==ALARM && (count%25==0)) {
 red = !red;
 count = 0;
 }

 *pLEDR = red;
 *pLEDG = green;
 }

 void keyISR()
 {
 /* remember: no waiting in here */
 int key = *pKEY_EDGECAPTURE;
 *pKEY_EDGECAPTURE = 0;
 if(key & (8|4)) {
 mode = ALARM;
 red = 1;
 } }
} }

L37-2

NOTE: This is only a PARTIAL SOLUTION.
You must complete it yourself. Hint: the main
program and both ISRs are all incomplete.

